
CS4203 – Computer Security University of St Andrews

RHYTHMIC KEYLOGGING FOR AUTHENTICATION
Matriculation Number: 210027910

Abstract – Passwords are not as secure as many would hope and most current generation 2nd
factor authentication methods are inconvenient or expensive. The use of typing rhythm as an
authentication method is an attractive alternative to existing methods. The background of
typing rhythm is explored. Using a custom keylogger and small trial group, an experiment to
assess the suitability of typing rhythm as an authentication method is conducted. The
performance of simple vs complex typing rhythms are discussed and the effect of username
length on authentication performance is determined.

Keywords – Security, Credentials, Username, Password, Authentication, Keylogger, Rhythm,
Experiment, Trial, Keystroke Dynamics, Keystroke Analysis, Typing Biometrics, Typing
Rhythms.

Word Count (excluding references, appendices): 4579

1 INTRODUCTION

This document discusses the planning and execution of a prototypical experiment using a small trial
group. Using a custom key logger, timings are taken for a user entering credentials, with the purpose
of determining the suitability of using the typing rhythm with which the credentials are entered as a
form of authentication. This authentication method is then evaluated with reference to traditional
password-based authentication systems and more modern Two Factor Authentication (2FA) systems.

The remainder of this document opens by discussing the problems associated with traditional
password-based authentication and drawbacks of the most common 2FA mechanisms (Section 2)
followed by a brief exploration of some of the existing and related works in using typing rhythm as an
authentication method (Section 3). Section 4 discusses the methodology of the experiment and Section
5 expands on this by discussing the hypotheses, variables and assumptions of the experiment. Section
6 presents the results of the experiment and Section 7 provides a conclusion. Finally the code for the
custom keylogger used in this experiment is presented in Appendix A, the scripts used as part of the
experiment are presented in Appendix B and any interesting raw data from the experiments presented
in Appendix C.

2 PROBLEM STATEMENT

In a computer security context, authentication is the act of verifying a user’s identity [1]. It is easy to
see why authentication is vital for secure systems. By far, the most common method of authentication
is password-based authentication [2] in which a user must supply a username (usually public
knowledge) and a password (known only to the user). In a system of this type, the username is used to
identify the user, and the password is used to verify that the user is indeed the individual that the
username identifies. Unfortunately, password-based authentication suffers from a wide variety of
deficiencies, including but not limited to the tendency for users to cycle only a few different
passwords [3], the high number of users who write down or forget their password [4] and the
vulnerability of short or simple passwords to brute force or dictionary attacks [5].

In response to their perceived weakness, many applications now employ a second authentication
method in addition to traditional password-based authentication, and require users to pass both
authentication methods in order to gain access. This is known as 2FA and usually manifests as sending

2021-22 1 of 40

CS4203 – Computer Security University of St Andrews

the user a message containing a One Time Passcode (OTP) which they must supply in addition to their
password [6]. There are many different mechanisms [7] to send the user the OTP. The most common
method is sending the user an SMS containing the OTP. This can be inconvenient and the user must
possess a cell phone. Recently, many applications have begun to support the use of a software OTP
provider, such as the Microsoft or Google authenticator applications for smartphones. Whilst this may
provide some defence against SMS insecurities, it has the same drawbacks from a convenience
perspective. A more secure alternative to this is a hardware OTP provider, but these may be even less
convenient than a software provider or SMS (if a user doesn’t want to carry a phone, they certainly
don’t want to carry a hardware authenticator). Another possibility is sending the user an OTP or a
URL (which acts as a OTP) to the user’s email address. This may be more convenient as the user will
typically have access to their emails when using a computer or mobile application. However, as
discussed previously, many users recycle the same passwords for different applications, and hence if
the attacker already has a user’s password, they may be able to gain access to their email account,
negating the effect of 2FA. A final possibility is the use of a biometric such as fingerprints or facial
recognition, but these are typically used as an alternative to passwords rather then in addition to them
as they can be inaccurate, if for example the user is wearing gloves or a face covering.

As discussed above, most of the second factor authentication methods in use today are inconvenient to
the user, and many of the more secure options require additional hardware. The use of typing rhythm
as an authentication method could offer a convenient and inexpensive second factor authentication
that does not require any additional hardware and could go largely unnoticed by honest users.

3 BACKGROUND

During World War Two, intelligence staff developed a technique for identifying telegraph operators by
the unique typing pattern they used when sending Morse code. This technique was known as “The Fist
of the Sender” [8] and found many useful applications in the military intelligence domain.

More recently, security researchers realised that this discovery could be applied to modern keyboards
and could be categorised as a form of “soft” or “behavioural” biometrics [9]. Soft biometrics are
defined as “physical and behavioural traits, such as gender, height and weight, which are not unique to
a specific subject, but are useful for identification, verification, and description of human subjects”
[10]. Since soft biometrics are not unique to an individual, they are usually used in combination with
some other authentication method as a 2FA system. It is believed that humans use a combination of
soft biometrics in order to identify each other [11].

This area of research is known by number of names: keystroke dynamics, keystroke analysis, typing
biometrics and typing rhythms [12]. When studying typing rhythm, there are typically two metrics of
interest. These are dwell time and flight time. The former is the amount of time that a key is held
down for, and the latter is the amount of time in between key presses [13]. Other metrics, such as
typing error frequency (how often does the user use backspace), frequency of using certain characters
(such as number pad numbers instead of top-row numbers) and how capital letters are generated
(which out of shift and the letter is released first or does the user use caps lock) can also be of interest.
Typing characteristics can be extracted from structured text such as username/password forms, or
unstructured text [13] which is typically gathered by running a general keylogger in the background of
a user session.

Much like other biometric systems, when used as part of an authentication system, a typing rhythm
component would first need to construct a reference template for each user that a sample could later
be matched against [13]. The reference template is built up from a number of features and eventually
forms a profile representing a user which is stored in a database. There are many different ways to
extract typing features as well as many different comparison methods. The characteristics of a typing
rhythm authentication system are determined by the combination of features considered, extraction
method, comparison method, data gathering method (structured/unstructured), reference template

2021-22 2 of 40

CS4203 – Computer Security University of St Andrews

density (amount of information contained in the reference template), sample density (amount of
information contained in sample to be compared to reference template) and database size (number of
users).

In 1997, F. Monrose and A. Rubin [14] constructed a database of 42 keystroke profiles of which 11
were eliminated due to local machine configuration issues invalidating the data. Each profile consisted
of an N-Dimensional feature vector where the features are the timing variables of the most common n-
grams (such as th, he, nd, re, in, ing…). Reference profiles were constructed from users typing a
number of sentences into a dedicated application. These were then organised into clusters based on
typing speed in order to speed up the retrieval process. The authors then compared the use of 3
different metrics to compare samples against reference profiles:

• Euclidean Distance between sample and reference.

• Non-Weighted Probability in which a probability is attached to each feature. Higher
probabilities are assigned to features closer to the mean, and lower to features further away.

• Weighted Probability in which probabilities are attached to each feature and frequencies are
relative to the entire dataset.

Their results showed that Weighted Probability offers the best metric, and also that optimal
performance is achieved when comparing two structured samples.

In 2000, S. Cho et al. [15] proposed the use of a neural network as a classifier of typing data. They
gathered data from 25 participants asking each to generate a 7 character password. Each participant
typed their password 150-400 times over a period of up to a week. The last 75 samples for each user
was set aside for training and the rest used for training the neural network. Each sample was stored as
a 15-dimensional timing vector consisting of [D1, F1, D2, F2, … , D7, F7, DE], where Dx is the dwell
time for the xth character and Fx is the flight time between the xth character and the x+1th character. DE
is the dwell time for the enter key. Note that negative flight times are possible if the user presses the
next key before releasing the last. The authors discarded any timing vectors containing a feature in the
top 10% to eliminate outliers. A multilayer perception neural network using back-propagation for
learning was then trained using this data. They were able to identify users based on their typing
rhythm with an average error rate of 1% across their small database. In addition, 15 “Imposters” were
given all the passwords, and typed each 5 times. None were able to authenticate successfully. In
addition to the processing power required to train neural networks, one major drawback of this
approach is that the entire network must be retrained to introduce a new user.

In 2011, J. Deluca et al. [16] gathered a dataset consisting of timing data about each key pressed
during a session lasting between 30 minutes and 4 hours for 4 users, with an average of 50,000
keystrokes per user. The data was gathered using the Fimbel keylogger and converted by a custom
feature extractor developed by the authors. The features that the authors were interested in are key
pressed, time pressed, time released. This data was then used to train a K-Nearest-Neighbour
classifier. The authors were able to obtain an average accuracy of 89.49%. The authors admitted that
this method was not good enough to reliably authenticate user by itself, however noted that the area
showed great promise and warranted further research, in particular repeating the experiment with a
more suitable key logger and greater number of participants.

In 2016, S. Sznur and S. García [17] proposed the use of unsupervised clustering algorithms to group
typing data by user. As part of their research they generated the largest public labelled keystroke
dataset available at the time. This dataset consisted of 379 sessions across 17 unique users gathered by
custom keylogging software created by the authors. Each session contained all the keystrokes a user
entered whilst using the computer and hence is unstructured data. The dataset was then partitioned
into smaller datasets to enable the authors to test different hypothesises. Each hypothesis tested a
different distance metric (or combination of metrics). The distance metric was combined with the K-
Means clustering algorithm to group the data samples into clusters in the hope that each group would

2021-22 3 of 40

CS4203 – Computer Security University of St Andrews

be a unique user. The authors found that the distance metric “A-distance digraphs + R-distance
digraph” offered the best performance and was able to demonstrate an accuracy of 78.9% when
applied to all 17 users. Its best accuracy was 98.8% and was achieved when data from only 5 users
who all had a similar (and large, >15) number of sessions recorded. R-distance considers the degree of
disorder of a vector V with regards to its ordered counterpart V’. R-distance is able to capture the
typing rhythm of a user, without capturing their overall speed. A-distance captures the absolute typing
speed of a user across an n-graph. Digraphs are groups of 2 letters. The authors concluded that as long
as there is sufficient data about each user, and the total number of users is known, it is possible to
classify typing data into groups corresponding to a single user with a high degree of accuracy. K, the
number of clusters, must be set in advance, and so adding a new user would require the clustering
process to be repeated.

4 METHODOLOGY

4.1 KEYLOGGER

The data for this experiment will be gathered using a purpose built keylogger program. The keylogger
is programmed in Java and produces results files, see appendix A for the source code and an example
results file. After the starting keylogger, a user is presented with a mock login screen, as shown in
figure 1. The login screen consists of a username field, a password field and a submit button. Users
enter values into the two fields and then click the submit button (or press the enter key). Once the
submit button has been pressed, a results file will be generated. Results files consist of two parts:
header and keys. The header contains the complete values for username and password, and the total
time elapsed between the first key being pressed and the last key being released. The keys section of
the file is in comma separated value (CSV) format where each entry represents one complete key
press/release and stores the following information: numerical key code, character represented, clock
time the key was pressed, clock time the key was released, time elapsed whilst key was pressed and
time elapsed between previous key being released and this key being pressed. The clock times use a
JVM clock that is not representative of the real world time these keys were pressed but has a higher
resolution than using the system time. As all clock times are relative, the data can be simplified by
setting the first clock time that appears in the file to zero and then subtracting the first clock time from
every other clock time. The unit for time measurements is nanoseconds (ns). As the data gathered is
from a form with set labels, the dataset for this experiment is structured.

4.2 EXPERIMENT DESIGN
Five test subjects were enlisted to provide data for this experiment. Each subject was asked to enter
the same login credentials into the keylogger three times, resulting in three data files per test subject
and a total of 15 results files. Several days later, the same test subjects were asked to enter the same
credentials a further 3 times, resulting in a further 15 results files. All test subjects used the same
laptop to operate the keylogger to remove any variance caused by the keyboard.

2021-22 4 of 40

Figure 1: Screenshot of keylogger.

CS4203 – Computer Security University of St Andrews

A sixth test subject was enlisted to play the part of the ‘imposter’. The imposter is given the
credentials of all the other test subjects and is asked to type each three times. This generates a further
15 results files. All six subjects were asked to retry any attempt that involved the use of backspace to
correct an error, and the credentials were verified to ensure that each subject used identical credentials
for each attempt.

All test subjects are friends or family members of the author and will remain anonymous. Due to the
privacy concerns of the test subjects, the data gathered from them will not be shared publicly and only
timing data will be presented in this document.

The first three samples from each subject will be used to generate a reference profile. Reference
profiles will consider the average dwell and flight times on a per keystroke basis, as well as average
overall time. For example, the reference profile for the password ‘123’ would store average time 1 is
held (across the three samples), average time between 1-2, average time 2 is held, average time
between 2-3, average time ‘3’ is held, average time between 1 being pressed and 3 being released
(overall time). Both mode and median will be trialled to generate the average values, to investigate the
effect this has on performance. A python script will be developed to automate the process of
generating the reference profiles and save them in a CSV format (see Appendix B for details).

The final three samples from each subject will be login attempts against the reference profile. Each
timing from the attempts will be compared against the reference timing. If a timing falls within a
percentage tolerance of the reference timing, that data point will be considered a match. This
percentage tolerance will be referred to as timing tolerance. If the number of data points that match
reach a threshold, the login attempt will be considered successful. This threshold is referred to as
acceptance threshold. Both settings will be varied to investigate the effect on performance.

The samples generated by the imposter are considered to be login attempts against the reference
profile of the test subject with the same credentials. The performance of each setting pair can then be
evaluated for each test subject in terms of True Positives (authorised user authenticates), False
Positives (imposter authenticates), True Negatives (imposter fails to authenticate) and False Negatives
(authorised user fails to authenticate). Finally, the performance of the overall system at each tolerance
setting can be evaluated by combining all the data from each individual subject and calculating the
False Acceptance Rate (FAR) and False Rejection Rate (FRR). A python script will be developed to
automate the process of testing each of the login attempts against the corresponding reference profiles
at given acceptance threshold and timing tolerance settings and save relevant performance metrics to a
CSV file (see Appendix B for details).

5 EXPERIMENT

5.1 HYPOTHESISES

Hypothesis 1 (H1): a simple rhythm can be determined more easily than a more patterned based one.
A simple rhythm is defined as 1 or 2 distinct rhythms (such as ta-ta-ta-ta or ta-tum-ta-tum). A pattern
is a mix of rhythms with more complex timings. A rhythm is considered easily determined if there is a
high False Acceptance Rate.

Hypothesis 2 (H2): incorporating the username rhythm improves performance versus considering the
password rhythm alone.

2021-22 5 of 40

CS4203 – Computer Security University of St Andrews

5.2 VARIABLES
Independent variable:

• Test subject and their corresponding credentials

Dependent variables:

• Dwell time per keystrokes

• Flight time in between keystrokes

• Overall time to enter credentials

Control variables:

• Machine and environment used to run keylogger and gather keystroke data (OpenJDK 11.0.11
running on Gigabyte Aero 15, i7-10750H, Ubuntu 20.10 Linux, 16GB RAM)

• Keyboard used to enter samples

• Number of samples per test subject

• Averaging method for reference profiles (tested with mean and median)

• Timing tolerance (tested at 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%)

• Acceptance threshold (tested at 60%, 70%, 80%, 90% and 100%)

5.3 ASSUMPTIONS
• All test subjects correctly enter their credentials on each attempt without using the backspace

key

• Rhythm of Tab (used to progress down the form) and Enter key (used to submit the form) are
not considered

6 RESULTS

6.1 PARAMETER TUNING
Before the hypothesises can be considered, the optimal values for the parameters needed to be
experimentally determined. There are three parameters of interest: averaging method, acceptance
threshold and timing tolerance. The optimal parameters were determined by varying the acceptance
threshold and timing tolerance and calculating the resultant FAR and FRR for each setting pair across
all 30 authorised and imposter (15 of each) login attempts against the reference profiles. This was
repeated for each of the averaging methods. The raw results from this can be found in Appendix C.
Figures 2, 3, 4 and 5 show 3-dimensional plots of these results. The best FAR and FRR were 3.33%
and 0% respectively and were achieved when the averaging mode was median, the acceptance
threshold was 60% and the timing tolerance was 40%.

2021-22 6 of 40

CS4203 – Computer Security University of St Andrews

6.2 HYPOTHESIS 1
In order to evaluate H2, the dataset must be split into two partitions. One partition contains simple
rhythms and the other more complex rhythms. For the sake of simplicity, when classifying rhythms,
only the dwell time is considered, but future works should look at incorporating the flight time into
this classification in addition to dwell time. The test subjects will be classified based on their median
reference profiles (see Appendix C). The performance will be evaluated based on the FAR when the
parameters are set to the values determined in Section 6.1. The dataset is partitioned as shown below:

Simple Rhythms: Subject 1, Subject 2.

Complex Rhythms: Subject 3, Subject 4, Subject 5.

2021-22 7 of 40

Figure 3: (Acceptance Threshold, Timing Tolerance)
vs FAR for Mean averaging.

Figure 2: (Acceptance Threshold, Timing Tolerance)
vs FRR for Mean averaging.

Figure 4: (Acceptance Threshold, Timing Tolerance)
vs FRR for Median averaging.

Figure 5: (Acceptance Threshold, Timing Tolerance)
vs FAR for Median averaging.

CS4203 – Computer Security University of St Andrews

The confusion matrices for the simple rhythms and for the complex rhythms are shown in tables 1 and
2 respectively.

Table 1: Confusion matrix for simple rhythms.

Predicted

Positive Negative

Actual
Positive 6 0

Negative 0 6

Table 2: Confusion matrix for complex rhythms.

Predicted

Positive Negative

Actual
Positive 9 0

Negative 1 8

The corresponding FAR for the simple rhythms is 0% and 5.56% for the complex rhythms. Based on
this it would seem that H2 is incorrect, however there is only one false positive result in the entire
dataset when the parameters are set to the optimal values, which is against test subject 5. This means
that whichever partition of the dataset includes test subject 5 will always perform worse then the other
partition. Therefore, the test data used as part of this experiment is not sufficient to definitively prove
H1 either way.

6.3 HYPOTHESIS 2
To test H2, a second dataset was generated using a Python script (see Appendix B for details) which
removed the keystroke information for the username field from the original dataset. Then, with the
parameters set to the optimal values as determined in Section 6.1, confusion matrices across the whole
dataset were generated for the original username/password dataset and the password-only dataset.
These are presented in tables 3 and 4 respectively.

Table 3: Confusion matrix for username/password dataset.

Predicted

Positive Negative

Actual
Positive 15 0

Negative 1 14

Table 4: Confusion matrix for password-only dataset.

Predicted

2021-22 8 of 40

CS4203 – Computer Security University of St Andrews

Positive Negative

Actual
Positive 10 11

Negative 4 5

The FAR and FRR for the username/password dataset are 3.33% and 0% respectively as calculated in
Section 6.1. In comparison, the FAR and FRR for the password-only dataset are 13.33% and 16.67%
respectively. However, if the acceptance threshold is set to 90% and the timing tolerance to 100%, the
FAR and FRR can be improved to 13.33% and 10% respectively.

By looking at each subject’s individual FAR and FRR across the username/password dataset, it is
possible to investigate the effect of the username length on performance. Figure 6 is a line graph
showing the effect of username length on FAR and FRR, where the parameters are set to the optimal
values determined in Section 6.1.

Based on the results shown above, it would seem that H2 is correct. The FAR and FRR were both
dramatically lower for the username/password dataset when compared to the password-only dataset.
This is not surprising, as including the username rhythm provides more data points to match against.
The test subject who had the shortest username, did have the worst FAR score and was the only
subject whom the imposter was able to successfully authenticate against, suggesting that username
length does have an effect on performance. However, the size of the trial makes it difficult to draw any
conclusive inference and ideally the experiment should be repeated with more test subjects whose
username lengths are more evenly distributed.

7 CONCLUSION
The system developed as part of this experiment was able to display relatively good performance once
the optimal values for the parameters had been set. For the small number of samples available, the
system was able to demonstrate a FAR of 3.33% and a FRR of 0%. Whilst these values are not
sufficient to provide a reasonable level of security as a primary authentication mechanism, it is enough

2021-22 9 of 40

Figure 6: Line graph showing FAR and FRR performance figures against username length.

3 10 12 19 22
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Username Length Performance

FAR

FRR

Username Length (Characters)

P
e

rf
o

rm
a

n
ce

CS4203 – Computer Security University of St Andrews

to significantly enhance the security of traditional password protected systems if used as part of a 2FA
system.

However, the system presented has a number of deficiencies that should be addressed in future work.
The first is the inability for the system to handle backspace or other error corrections. Test subjects
were asked to retry any attempts that included an error correction and so the effect of this has not been
considered as part of this work. This decision was made because the mechanism the system uses to
compare attempts against reference profiles, requires the number of keystrokes to be equal. A second
deficiency is that keys held for longer then a certain threshold will generate a repeated event. As a
result of this, all three of the imposter’s attempts against test subject 4 were immediately rejected as
number of keystrokes in the attempt and reference profile were different. This deficiency could be
fixed by modifying the keylogger so that it combines duplicate keystroke events together.

Unfortunately, the data gathered as part of this experiment was not sufficient to definitively prove
either H1 or H2. In both cases there was not sufficient data to make a conclusive statement either way.
This could be alleviated in the future by enlisting significantly more test subjects, and asking each to
generate more samples. It could be even further improved by continually recording keystrokes for a
fixed period and using this data to generate reference profiles instead of restricting the profile
generation to three structured attempts. It may also be interesting to ask all users to use a password of
the same length to further control the experiment. For proving H2, it may be useful to assign a
username to each user and ensure the username lengths are evenly distributed.

Integrating a typing rhythm into an authentication system would be almost free and should be
acceptable to the public as if employed correctly, honest users will not even notice the system, whilst
enjoying improved security. Users would require almost no training to utilise a system that
incorporated typing rhythm security. Enrolling new users to the system would be straight forward, not
requiring an additional process to gather samples as users already need to type as part of most existing
enrolment processes. Users could not even be required to repeatedly type the same credentials, as
typing rhythms could be established by monitoring keystrokes in the background. Advanced forms of
typing rhythms systems could continually verify the identity of the user by monitoring keystroke
dynamics in the background which could combat the security issues presented by users forgetting to
log out. This could also be useful in high-stress environments such as air traffic control centrers where
a typing rhythm system could detect fatigue or distraction through altered typing rhythms.

Typing rhythm is a soft biometric, which means it is not unique to an individual user. This limits is
effectiveness as a primary authentication method. A user’s typing rhythm could change for a wide
variety of reasons including fatigue, injury, using only one hand to type, temperature, intoxication, or
improving/declining typing skills, and as a result, a user may be unable to access their system. There
are also privacy concerns with this technology, especially if a version that continually monitors
keystrokes is employed. Depending on how secure (or ethical) the keylogging system is, the
technology could be used to steal sensitive information. Another challenge is the effect that different
keyboards have on typing biometrics. Whilst the data from this experiment was all gathered using the
same keyboard, this is unrealistic in a real world environment where users may wish to login from
various different devices. Test subjects also complained about using an unfamiliar keyboard and many
had to practise before being able to enter credentials without error.

2021-22 10 of 40

CS4203 – Computer Security University of St Andrews

REFERENCES

[1] D. Gollman, “Computer Security”, John Wiley and Sons, 1999.

[2] P. Elftmann, “Secure Alternatives to Password-based Authentication Mechanisms”, RWTH
Aachen University, 2006.

[3] E. Stobert & R. Biddle, “The Password Life Cycle: User Behaviour in Managing Passwords”,
USENIX Association Symposium on Usable Privacy and Security (SOUPS), 2014.

[4] M. Zviran & W.J. Haga, “A comparison of password techniques for multilevel authentication
mechanisms”, The Computer Journal, pages 227-237, 1993.

[5] A. Adams & M. A. Sasse, “Users are not the enemy: Why users compromise computer security
mechanisms and how to take remedial measures”, Communications of the ACM, pages 41-46,
1999.

[6] T. Petsas, G. Tsirantonakis, E. Athanasopoulos & S. Ioannidis, “Two-factor authentication: is the
world ready?: quantifying 2FA adoption”, EuroSec: Proceedings of the Eighth European
Workshop on System Security, 2015.

[7] I. Velásquez, A. Caro & A. Rodríguez, “Authentication schemes and methods: A systematic
literature review”, Information and Software Technology 94, pages 30-37, 2018.

[8] “Origins - Keystroke Dynamics”, Wikipedia, https://en.wikipedia.org/wiki/Keystroke_dynamics
accessed on 08/11/2021

[9] J. Jenkins, Q. Nguyen, J. Reynolds, W. Horner & H. Szu, “ The physiology of keystroke
dynamics”, Proc. SPIE 8058, Independent Component Analyses, Wavelets, Neural Networks,
Biosystems, and Nanoengineering IX, 80581N, 2011

[10] G. Guo, M. Nixon, A. Ross & M. Vatsa, “Soft Biometrics: Extraction and Applications based on
Images and Videos”, Springer Open paper collection.

[11] A. Dantcheva, C. Velardo, A. D’Angelo & J. Dugelay, “Bag of soft biometrics for person
identification”, Multimedia Tools and Applications 51, pages 739-777, 2011.

[12] J. Ilonen, “Keystroke dynamics”, Advanced Topics in Information Processing, 2003.

[13] P. Švenda, “Keystroke Dynamics”, Masaryk University, 2001.

[14] F Monrose & A Rubin, “Authentication via keystroke dynamics”, 4th ACM conference on
Computer and communication security, 1997.

[15] S. Cho, C. Han, D. H. Han, H. Kim, “Web-Based Keystroke Dynamics Identity
Verification Using Neural Network”, Journal of Organizational Computing and Electronic
Commerce, 2000.

[16] J. Deluca, D. R. Worley, H. Henry, P. Folkes, N. Bakelman, “A System-Wide Keystroke
Biometric System”, Proceedings of Student-Faculty Research Day, CSIS, Pace University, 2011.

[17] S. Sznur & S. García, “Advances in Keystroke Dynamics Techniques to Group User Sessions”,
International Journal of Information Security Science, Vol 4, No. 2, 2016.”

2021-22 11 of 40

https://en.wikipedia.org/wiki/Keystroke_dynamics

CS4203 – Computer Security University of St Andrews

APPENDIX A: KEYLOGGER
The keylogger program is written in Java and does not have any external dependencies. It consists of
five classes, and produces a new results file with name [current system time].csv each time the submit
button is pressed. The directory to store the results should be specified as the first command line
parameter to the program (or can be set by changing the DEFAULT_PATH constant in Window.java).

PartialKey.java
package RythmicKeylogger;

/**

 * Stores some of the attributes of a key

 * Used for storing partial keys in a buffer

 */

public class PartialKey {

 public int keyCode;

 public long timeDown;

 public PartialKey(int keyCode, long down) {

 this.keyCode = keyCode;

 this.timeDown = down;

 }

}

Key.java
package RythmicKeylogger;

import java.awt.event.KeyEvent;

/**

 * CS4203 Computer Security - P2: Practical Applications, Part 1: Rhythmic Keylogger for
Authentication.

 * Stores information about a single keypress

 * @author 210027910

 * 14/10/2021

 */

public class Key {

 private int keyCode;

 private long timeDown;

 private long timeUp;

2021-22 12 of 40

CS4203 – Computer Security University of St Andrews

 private Key previousKey;

 /**

 * Constructor

 * @param character character that was pressed

 * @param down system time (in ns) when key was pressed

 * @param up system time (in ns) when key was released

 * @param previous key that was pressed before this key

 */

 public Key(int keyCode, long down, long up, Key previous) {

 this.keyCode = keyCode;

 this.timeDown = down;

 this.timeUp = up;

 this.previousKey = previous;

 }

 /**

 * Construct from partial key

 * @param key Partial key (contains character and timeUp)

 * @param up system time (in ns) when key was released

 * @param previous key that was pressed before this key

 */

 public Key(PartialKey key, long up, Key previous) {

 this(key.keyCode, key.timeDown, up, previous);

 }

 /**

 * Getter for keyCode

 * @return code of character that was pressed

 */

 public int getKeyCode() {

 return this.keyCode;

 }

 /**

 * Convert keycode into character

 * @return keycode in character form

2021-22 13 of 40

CS4203 – Computer Security University of St Andrews

 */

 public String getCharacter() {

 return KeyEvent.getKeyText(this.keyCode);

 }

 /**

 * Getter for timeDown

 * @return system time (in ns) key was pressed

 */

 public long getTimeDown() {

 return this.timeDown;

 }

 /**

 * Getter for timeUp

 * @return system time (in ns) key was released

 */

 public long getTimeUp() {

 return this.timeUp;

 }

 /**

 * Getter for previousKey

 * @return key that was pressed before this key

 */

 public Key getPreviousKey() {

 return this.previousKey;

 }

 /**

 * Calculate and return time the key was pressed for (in ns)

 */

 public long timeElapsed() {

 return this.timeUp - this.timeDown;

 }

}

Chain.java
package RythmicKeylogger;

2021-22 14 of 40

CS4203 – Computer Security University of St Andrews

import java.util.List;

import java.util.ArrayList;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

/**

 * CS4203 Computer Security - P2: Practical Applications, Part 1: Rhythmic Keylogger for
Authentication.

 * Manages a chain of keypresses.

 * @author 210027910

 * 14/10/2021

 */

public class Chain {

 //key data

 private Key firstKey;

 private Key latestKey;

 private int chainLength;

 //chain data

 private String username;

 private String password;

 /**

 * Constructor.

 */

 public Chain() {

 this.firstKey = null;

 this.latestKey = null;

 this.chainLength = 0;

 this.username = null;

 this.password = null;

 }

 /**

 * Add a new key to the keychain.

 * @param key key to be added

2021-22 15 of 40

CS4203 – Computer Security University of St Andrews

 */

 public void addKey(Key key) {

 if (key.getPreviousKey() == this.latestKey) {

 if (this.latestKey == null) {

 this.firstKey = key;

 }

 this.latestKey = key;

 chainLength++;

 }

 else {

 throw new IllegalArgumentException("Supplied key is not part of this keychain.
Start a new keychain.");

 }

 }

 /**

 * Getter for chainLength.

 * @return length of the chain in keys

 */

 public int length() {

 return this.chainLength;

 }

 /**

 * Represent the chain as List.

 * @return List form of chain

 */

 public final List<Key> getChain() {

 List<Key> chain = new ArrayList<Key>();

 Key key = this.latestKey;

 while(key != null) {

 chain.add(0, key);

 key = key.getPreviousKey();

 }

 return chain;

 }

2021-22 16 of 40

CS4203 – Computer Security University of St Andrews

 /**

 * Setter for username.

 * @param username new username

 */

 public void setUsername(String username) {

 this.username = username;

 }

 /**

 * Getter for username.

 * @return username

 */

 public String getUsername() {

 return this.username;

 }

 /**

 * Setter for password.

 * @param password new password

 */

 public void setPassword(String password) {

 this.password = password;

 }

 /**

 * Getter for password.

 * @return password

 */

 public String getPassword() {

 return this.password;

 }

 /**

 * Calculates the total time elapsed to type the chain (in ns).

 * From first key down to last key up.

 * @return total time elapsed to type the chain (in ns)

 */

2021-22 17 of 40

CS4203 – Computer Security University of St Andrews

 public long timeElapsed() {

 return latestKey.getTimeUp() - firstKey.getTimeDown();

 }

 /**

 * Print a summary of the chain.

 */

 public void printSummary() {

 System.out.println("Username: " + this.getUsername());

 System.out.println("Password: " + this.getPassword());

 System.out.println("Time Elapsed: " + this.timeElapsed() + " ns");

 System.out.println("\nKeys: ");

 for (Key key : this.getChain()) {

 System.out.println("Key Code: " + key.getKeyCode());

 System.out.println("Character: " + key.getCharacter());

 System.out.println("Time held: " + key.timeElapsed() + " ns");

 if (key.getPreviousKey() != null) System.out.println("Time between: " +
Math.abs((key.getTimeDown() - key.getPreviousKey().getTimeUp())) + " ns");

 }

 }

 /**

 * Save chain to disk.

 * KeyLogger.endChain() should be called first

 * @param filepath path to save chain too

 * @throws IOException

 */

 public void save(String path) throws IOException {

 String filepath = path + "chain" + System.currentTimeMillis() + ".csv";

 File file = new File(filepath);

 FileWriter writer = new FileWriter(file);

 writer.write("Username: " + this.getUsername() + "\n");

 writer.write("Password: " + this.getPassword() + "\n");

 writer.write("Total Time Elapsed (ns): " + this.timeElapsed() + "\n");

 writer.write("\nKeys:\n");

2021-22 18 of 40

CS4203 – Computer Security University of St Andrews

writer.write("key_code,character,time_pressed,time_released,time_elapsed,time_between\n");

 for (Key key : this.getChain()) {

 long timeBetween = 0;

 if (key.getPreviousKey() != null) {

 timeBetween = Math.abs((key.getTimeDown() -
key.getPreviousKey().getTimeUp()));

 }

 String line = key.getKeyCode() + "," + key.getCharacter() + "," +
key.getTimeDown() + "," + key.getTimeUp() + "," + key.timeElapsed() + "," + timeBetween +
"\n";

 writer.write(line);

 }

 writer.close();

 }

}

KeyLogger.java
package RythmicKeylogger;

import java.awt.event.KeyAdapter;

import java.awt.event.KeyEvent;

import java.util.ArrayList;

/**

 * CS4203 Computer Security - P2: Practical Applications, Part 1: Rhythmic Keylogger for
Authentication.

 * Intercepts key presses and records them in key classes

 * @author 210027910

 * 14/10/2021

 */

public class KeyLogger extends KeyAdapter {

 private Chain activeChain;

 private Key previousKey;

 private ArrayList<PartialKey> buffer;

2021-22 19 of 40

CS4203 – Computer Security University of St Andrews

 /**

 * Constructor

 * @param activeChain initially active chain

 */

 public KeyLogger(Chain activeChain) {

 super();

 this.previousKey = null;

 this.activeChain = activeChain;

 this.buffer = new ArrayList<PartialKey>();

 }

 /**

 * Intercepts key press events, records the time they occurred and the character
pressed.

 */

 @Override

 public void keyPressed(KeyEvent event) {

 int keyCode = event.getKeyCode();

 long timeDown = System.nanoTime();

 buffer.add(new PartialKey(keyCode, timeDown));

 }

 /**

 * Intercepts key release events and records the time they occured and add this
information to the active chain

 */

 @Override

 public void keyReleased(KeyEvent event) {

 for (PartialKey partial : this.buffer) {

 if (partial.keyCode == event.getKeyCode()) {

 Key key = new Key(partial, System.nanoTime(), this.previousKey);

 activeChain.addKey(key);

 this.previousKey = key;

 this.buffer.remove(partial);

 break;

 }

 }

2021-22 20 of 40

CS4203 – Computer Security University of St Andrews

 }

 /**

 * To be called before chaning active buffer or printing.

 * Finishes any partial keys even if they have not been released.

 */

 public void endChain() {

 for (PartialKey partial : this.buffer) {

 Key key = new Key(partial, System.nanoTime(), this.previousKey);

 activeChain.addKey(key);

 this.previousKey = key;

 this.buffer.remove(partial);

 break;

 }

 }

 /**

 * Chain the currently active chain where info is recorded

 * @param newChain new chain to use for data recording

 */

 public void changeActiveChain(Chain newChain) {

 this.activeChain = newChain;

 this.previousKey = null;

 this.buffer = new ArrayList<PartialKey>();

 }

}

Window.java
package RythmicKeylogger;

import java.awt.Container;

import java.awt.Insets;

import java.awt.event.ActionListener;

import java.io.IOException;

import java.awt.event.ActionEvent;

import javax.swing.*;

2021-22 21 of 40

CS4203 – Computer Security University of St Andrews

import java.util.ArrayList;

/**

 * CS4203 Computer Security - P2: Practical Applications, Part 1: Rhythmic Keylogger for
Authentication.

 * Main class.

 * @author 210027910

 * 14/10/2021

 */

public class Window {

 private static final boolean VERBOSE = false;

 private static final String DEFAULT_PATH =
"/media/jbm/JBM-UNI/CompSciMSc/Security/Assignments/Assignment 2/Part1/results/";

 private static String filepath;

 /**

 * Entry point for program. Contains main method and responsible for creating main GUI
and attaching keylogger.

 * @param args Command line arguments

 */

 public static void main(String[] args) {

 //check if filepath has been set

 if (args.length > 0) {

 filepath = args[0];

 //add trailing slash

 if (filepath.charAt(filepath.length() - 1) != '/') {

 filepath += "/";

 }

 }

 else {

 filepath = DEFAULT_PATH;

 }

 //chain tracking

 ArrayList<Chain> chains = new ArrayList<Chain>();

 chains.add(new Chain());

 //key logger

2021-22 22 of 40

CS4203 – Computer Security University of St Andrews

 KeyLogger logger = new KeyLogger(chains.get(0));

 //declare GUI elements

 JFrame frame = new JFrame();

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(400, 150);

 JLabel usernameLabel = new JLabel("Username:");

 JLabel passwordLabel = new JLabel("Password:");

 JTextField usernameField = new JTextField();

 JPasswordField passwordField = new JPasswordField();

 JButton submitButton = new JButton("Submit");

 submitButton.setMargin(new Insets(5,5,5,5));

 //Add elements to frame

 Container pane = frame.getContentPane();

 pane.setLayout(new BoxLayout(pane, BoxLayout.Y_AXIS));

 pane.add(usernameLabel);

 pane.add(usernameField);

 pane.add(passwordLabel);

 pane.add(passwordField);

 pane.add(submitButton);

 frame.getRootPane().setDefaultButton(submitButton);

 //add logger to textfields

 usernameField.addKeyListener(logger);

 passwordField.addKeyListener(logger);

 //Add listener for button

 submitButton.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent e) {

 //record textfield value in chain

 chains.get(chains.size() - 1).setUsername(usernameField.getText());

2021-22 23 of 40

CS4203 – Computer Security University of St Andrews

 chains.get(chains.size() -
1).setPassword(String.valueOf(passwordField.getPassword()));

 //instruct keylogger to end the chain

 logger.endChain();

 //print summary

 if (VERBOSE) chains.get(chains.size() - 1).printSummary();

 //save chain

 try {

 chains.get(chains.size() - 1).save(filepath);

 } catch (IOException exception) {

 exception.printStackTrace();

 }

 //move to new chain

 chains.add(new Chain());

 logger.changeActiveChain(chains.get(chains.size() - 1));

 //clear fields

 usernameField.setText("");

 passwordField.setText("");

 }

 });

 frame.setVisible(true);

 }

}

Example results file

Username: example

Password: examplepassword

Total Time Elapsed (ns): 5002049521

Keys:

key_code,character,time_pressed,time_released,time_elapsed,time_between

2021-22 24 of 40

CS4203 – Computer Security University of St Andrews

69,E,1872991105405,1873078345476,87240071,0

88,X,1873257375184,1873401926701,144551517,179029708

65,A,1873334063382,1873503895967,169832585,67863319

77,M,1873534945538,1873603240862,68295324,31049571

80,P,1873743907129,1873781245919,37338790,140666267

76,L,1873851786205,1873921514036,69727831,70540286

69,E,1873958332355,1874090593752,132261397,36818319

69,E,1875008928403,1875145660461,136732058,918334651

88,X,1875286385181,1875450835100,164449919,140724720

65,A,1875382994344,1875522942855,139948511,67840756

77,M,1875695317998,1875768144256,72826258,172375143

80,P,1875867487323,1875936874664,69387341,99343067

76,L,1876010055430,1876077541537,67486107,73180766

69,E,1876111129782,1876216296963,105167181,33588245

80,P,1876286344639,1876353152621,66807982,70047676

65,A,1876426337460,1876529581365,103243905,73184839

83,S,1876495153137,1876597639997,102486860,34428228

83,S,1876632466832,1876700067797,67600965,34826835

87,W,1877079641610,1877209862947,130221337,379573813

79,O,1877274370182,1877341865072,67494890,64507235

82,R,1877411093075,1877481501218,70408143,69228003

68,D,1877585313911,1877687877142,102563231,103812693

10,Enter,1877964885855,1877993154926,28269071,277008713

2021-22 25 of 40

CS4203 – Computer Security University of St Andrews

APPENDIX B: SCRIPTS

strip_usernames.py

This script operates on a copy of the original dataset and iterates through each of the results files
stripping username keystroke data from the keys section of the file.

#! /bin/python3

#10/11/2021

#CS3203 - Security: Practical 2, Part 1

#Quick and dirty script to remove usernames from results files in order to test hypothesis
2

#Will not work if the subject's username contains any special characters other then space,
full stop and @

#Modify replace_special() to add support for further special characters

#Running this script more then once on any single results file will remove ALL keystrokes

import os

ROOT = "/media/jbm/JBM-UNI/CompSciMSc/Security/Assignments/Assignment
2/Part1/password_only"

def replace_special(text):

 text = text.replace("Space", " ")

 text = text.replace("Period", ".")

 text = text.replace("ShiftQuote", "@")

 text = text.replace("QuoteShift", "@")

 return text

def process_file(path):

 print("Processing " + path)

 replacement = ""

 username = ""

 progress = ""

 i = 0

 f = open(path, 'r')

2021-22 26 of 40

CS4203 – Computer Security University of St Andrews

 for line in f.readlines():

 if i < 6:

 if "Username: " in line:

 username = line[10:].strip().upper()

 replacement += line

 else:

 if progress != username:

 char = line.split(",")[1]

 progress += char

 progress = replace_special(progress)

 else:

 replacement += line

 i += 1

 f.close()

 f = open(path, 'w')

 f.write(replacement)

 f.close()

def scan_dir(root):

 for filename in os.listdir(root):

 path = os.path.join(root, filename)

 if os.path.isdir(path):

 scan_dir(path)

 elif os.path.isfile(path) and ".csv" in path:

 process_file(path)

if __name__ == "__main__":

 scan_dir(ROOT)

reference_profiles.py

Iterates through every directory, starting in the directory specified by ROOT, looking for directories
called “reference”. Once it finds one it generates one reference profile for each averaging method
using the results files inside the “reference” folder. This is saved as a CSV in the directory one level

2021-22 27 of 40

CS4203 – Computer Security University of St Andrews

above the “reference” directory. It then proceeds to the next “reference” folder until profiles have been
generated for every test subject. This script is run against both the username/password dataset and the
password-only dataset.

#! /bin/python3

#10/11/2021

#CS3203 - Security: Practical 2, Part 1

#Script to generate reference profiles using both mean and median for each subject

import os

import pandas as pd

import statistics

import re

ROOT = "/media/jbm/JBM-UNI/CompSciMSc/Security/Assignments/Assignment 2/Part1/"

def main(root):

 for filename in os.listdir(root):

 path = os.path.join(root, filename)

 if os.path.isdir(path):

 if "subject" in path:

 name = path.rpartition("/")[-1]

 print("Processing " + name + "...")

 subject_path = os.path.join(path, "reference")

 sample_paths = [os.path.join(subject_path, s) for s in
os.listdir(subject_path) if ".csv" in s]

 samples = {}

 for i,sample_path in zip(range(len(sample_paths)), sample_paths):

 samples[i] = pd.read_csv(sample_path, skiprows=5)

 median_ref = ""

 mean_ref = ""

 end = 0

 for i in range(samples[0].shape[0]):

2021-22 28 of 40

CS4203 – Computer Security University of St Andrews

 if samples[0]["character"][i] == "Enter":

 end = i - 1

 break

 dwells = [float(samples[j]["time_elapsed"][i]) for j in samples.keys()]

 mean_ref += str(statistics.mean(dwells)) + ","

 median_ref += str(statistics.median(dwells)) + ","

 flights = [samples[j]["time_between"][i+1] for j in samples.keys()]

 mean_ref += str(statistics.mean(flights)) + ","

 median_ref += str(statistics.median(flights)) + ","

 overall_times = [samples[j]["time_released"][end] - samples[j]
["time_pressed"][0] for j in samples.keys()]

 mean_ref += str(statistics.mean(overall_times)) + ","

 median_ref += str(statistics.median(overall_times)) + ","

 mean_file = open(os.path.join(path, name + "_mean_reference_profile.csv"),
'w')

 mean_file.write(mean_ref)

 mean_file.close()

 median_file = open(os.path.join(path, name +
"_median_reference_profile.csv"), 'w')

 median_file.write(median_ref)

 median_file.close()

if __name__ == "__main__":

 main(ROOT + "results")

 main(ROOT + "password_only")

test_login.py

Starting in the directory specified by ROOT, finds the folder corresponding to each subject and tests
each of the login attempts found in the “attempt” folder against the reference profile generated by the
previous script. The script also finds the “imposter” folder and tests each attempt against the relevant
test subject. This is done for each combination of the acceptance thresholds and timing tolerances
specified in ACCEPTANCE_THRESHOLDS and TIMING_TOLERANCES respectively. These tests
are used to generate a confusion matrix for each of the test subjects, and one for the overall system
which are saved as CSV files. This script is run against both the username/password dataset and the
password-only dataset.

#! /bin/python3

2021-22 29 of 40

CS4203 – Computer Security University of St Andrews

#10/11/2021

#CS3203 - Security: Practical 2, Part 1

#Script to generate confusion matrix results CSVs for each test subject and the overall
systems

#runs for each combination of the tolerances specified in TIMING_TOLERANCES and
acceptance_thresholdS on each subject

import os

from numpy import mat

from prettytable import PrettyTable

import pandas as pd

ROOT = "/media/jbm/JBM-UNI/CompSciMSc/Security/Assignments/Assignment 2/Part1/"

TIMING_TOLERANCES = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

ACCEPTANCE_THRESHOLDS = [0.6, 0.7, 0.8, 0.9, 1.0]

AVERAGING_METHODS = ["mean", "median"]

def login(reference_profile, login_attempt, timing_tolerance, acceptance_threshold,
verbose=False):

 if len(reference_profile) != len(login_attempt):

 print("Reference profile and login attempt are of different length, are you sure
the credentials match?")

 return False

 table = PrettyTable()

 table.field_names = ["Point #", "Reference Value", "Attempt Value", "Within Tolerance",
"Needed tolerance"]

 result = []

 for i, ref, attempt in zip(range(len(reference_profile)), reference_profile,
login_attempt):

 minimum = ref - (ref * timing_tolerance)

 maximum = ref + (ref * timing_tolerance)

 result.append((attempt >= minimum) and (attempt <= maximum))

 needed_tolerance = "-"

 if not result[i]:

2021-22 30 of 40

CS4203 – Computer Security University of St Andrews

 needed_tolerance = str(abs(ref - attempt)/ref)

 table.add_row([i, ref, attempt, result[i], needed_tolerance])

 match_percentage = result.count(True) / len(result)

 success = match_percentage >= acceptance_threshold

 if verbose:

 print("Timing Tolerance: " + str(timing_tolerance) + ", Acceptance threshold: " +
str (acceptance_threshold))

 print(table)

 print("Matched on " + str(result.count(True)) + " data points.")

 print("Failed to match on " + str(result.count(False)) + " data points.")

 print("Match percentage: " + str(match_percentage))

 if success:

 print ("LOGIN SUCCESSFUL")

 else:

 print("LOGIN FAILED")

 return success

def extract_attempt(results_file):

 attempt = []

 df = pd.read_csv(results_file, skiprows=5)

 end = 0

 for i in range(df.shape[0]):

 if df["character"][i] == "Enter":

 end = i - 1

 break

 attempt.append(float(df["time_elapsed"][i]))

 attempt.append(float(df["time_between"][i+1]))

 attempt.append(float((df["time_released"][end] - df["time_pressed"][0])))

 return attempt

2021-22 31 of 40

CS4203 – Computer Security University of St Andrews

def load_reference_profile(file_path):

 file = open(file_path, 'r')

 profile = [float(x) for x in file.readline()[:-1].split(",")]

 file.close()

 return profile

def main(root, timing_tolerances, acceptance_thresholds, averaging_methods):

 #initialise system results data structure

 system_results = {}

 for method in averaging_methods:

 system_results[method] = {}

 for acceptance_threshold in acceptance_thresholds:

 for timing_tolerance in timing_tolerances:

 system_results[method][str(acceptance_threshold) + "," +
str(timing_tolerance)] = {

 "true_positives":0,

 "false_positives":0,

 "true_negatives":0,

 "false_negatives":0,

 }

 for filename in os.listdir(root):

 path = os.path.join(root, filename)

 if os.path.isdir(path):

 if "subject" in path:

 name = path.rpartition("/")[-1]

 print("Processing " + name + "...")

 for method in averaging_methods:

 profile_name = name + "_" + method + "_reference_profile.csv"

 profile = load_reference_profile(os.path.join(path, profile_name))

2021-22 32 of 40

CS4203 – Computer Security University of St Andrews

 output =
"acceptance_threshold,timing_tolerance,true_positives,false_positives,true_negatives,false_
negatives\n"

 for acceptance_threshold in acceptance_thresholds:

 for timing_tolerance in timing_tolerances:

 true_positives = 0

 false_positives = 0

 true_negatives = 0

 false_negatives = 0

 attempts_path = os.path.join(path, "attempt")

 for attempt_name in os.listdir(attempts_path):

 attempt_file = os.path.join(attempts_path, attempt_name)

 attempt = extract_attempt(attempt_file)

 result = login(profile, attempt, timing_tolerance,
acceptance_threshold)

 if result:

 true_positives += 1

 system_results[method][str(acceptance_threshold) + ","
+ str(timing_tolerance)]["true_positives"] += 1

 else:

 false_negatives += 1

 system_results[method][str(acceptance_threshold) + ","
+ str(timing_tolerance)]["false_negatives"] += 1

 imposter_path = os.path.join(root, "imposter")

 for attempt_name in [x for x in os.listdir(imposter_path) if
name in x]:

 attempt_file = os.path.join(imposter_path, attempt_name)

 imposter_attempt = extract_attempt(attempt_file)

 result = login(profile, imposter_attempt, timing_tolerance,
acceptance_threshold)

 if result:

 false_positives += 1

 system_results[method][str(acceptance_threshold) + ","
+ str(timing_tolerance)]["false_positives"] += 1

 else:

 true_negatives += 1

2021-22 33 of 40

CS4203 – Computer Security University of St Andrews

 system_results[method][str(acceptance_threshold) + ","
+ str(timing_tolerance)]["true_negatives"] += 1

 output += (f'{acceptance_threshold},{timing_tolerance},
{true_positives},{false_positives},{true_negatives},{false_negatives}\n')

 output_file_name = name + "_" + method + "_results.csv"

 output_file = open(os.path.join(path, output_file_name), 'w')

 output_file.write(output)

 output_file.close()

 #unpack system results into csv

 for method in averaging_methods:

 output =
"acceptance_threshold,timing_tolerance,true_positives,false_positives,true_negatives,false_
negatives\n"

 for acceptance_threshold in acceptance_thresholds:

 for timing_tolerance in timing_tolerances:

 key = str(acceptance_threshold) + "," + str(timing_tolerance)

 true_positives = system_results[method][key]["true_positives"]

 false_positives = system_results[method][key]["false_positives"]

 true_negatives = system_results[method][key]["true_negatives"]

 false_negatives = system_results[method][key]["false_negatives"]

 output += (f'{acceptance_threshold},{timing_tolerance},{true_positives},
{false_positives},{true_negatives},{false_negatives}\n')

 output_file_name = method + "_results.csv"

 output_file = open(os.path.join(root, output_file_name), 'w')

 output_file.write(output)

 output_file.close()

if __name__ == "__main__":

 main(ROOT+"results/", TIMING_TOLERANCES, ACCEPTANCE_THRESHOLDS, AVERAGING_METHODS)

 main(ROOT+"password_only/", TIMING_TOLERANCES, ACCEPTANCE_THRESHOLDS,
AVERAGING_METHODS)

2021-22 34 of 40

CS4203 – Computer Security University of St Andrews

3d_plot.py

This script is used to generate the 3D plots in Section 6.1. It takes a CSV containing the (acceptance
threshold, timing tolerance) vs (FAR, FRR) data as input. A shortened version of file containing the
values for the mean averaging method is shown below. A second file was used for the median
averaging method.

acceptance_threshold,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.7,0.7,0.7,0.7,0.7,0.7,0.7,0.
7,0.7….

timing_tolerance,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,
1,0.1….

FAR,0,0,0,0.033333333333333,0.2,0.4,0.4,0.4,0.4,0.4,0,0,0,0,0.1,0.2,0.3,0.366666666666667….

FRR,0.5,0.366666666666667,0.166666666666667,0,0,0,0,0,0,0,0.5,0.5,0.3,0.166666666666667….

Running the script produces a 3D bar chart which is shown on the screen and can then be saved or
screenshot for inclusion in this document. Changing between FAR and FRR is done by modifying the
final variable in the zip() part of the for loop on line 23. The title and labels should then be changed
accordingly.

#! /bin/python3

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.cm as cm

INPUT = "/media/jbm/JBM-UNI/CompSciMSc/Security/Assignments/Assignment
2/Part1/data/csv/median_param_FRR_FAR.csv"

f = open(INPUT, 'r')

acceptance = np.array([float(x) for x in f.readline().split(",")[1:]])

timing = np.array([float(x) for x in f.readline().split(",")[1:]])

far = np.array([float(x) for x in f.readline().split(",")[1:]])

frr = np.array([float(x) for x in f.readline().split(",")[1:]])

f.close()

fig = plt.figure()

ax = plt.axes(projection = '3d')

colors = cm.tab20(np.linspace(0, 1, len(far)))

width = depth = 0.1

#ax.bar3d(a-width/2., b-depth/2., 0, width, depth, a_score, shade=False, color = colors[i],
edgecolor = 'black')

for i, a, t, f in zip(range(len(far)), acceptance, timing, frr):

2021-22 35 of 40

CS4203 – Computer Security University of St Andrews

 ax.bar3d(a-width/2.0, t-depth/2.0, 0, width, depth, f, shade=False, color=colors[i],
edgecolor='black')

ax.set_title("Mean FRR")

ax.set_xlabel("Acceptance Threshold")

ax.set_ylabel("Timing Tolerance")

ax.set_zlabel("FRR")

plt.show()

2021-22 36 of 40

CS4203 – Computer Security University of St Andrews

APPENDIX C: DATA

Table 5: Reference profiles using median averaging method.

2021-22 37 of 40

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
Dwell Flight Dwell Flight Dwell Flight Dwell Flight Dwell Flight

87.319762 296.301486 128.127093 32.116125 130.066911 117.272092 115.931804 63.939369 93.482401 32.888933
120.452321 432.444327 88.241046 176.160337 102.260184 50.105983 103.142829 26.418256 103.793386 16.10361
103.163868 230.267471 135.780702 100.623727 84.343917 129.091262 166.102788 61.332785 70.865437 516.133139
105.868016 256.495245 87.574209 264.626286 77.711491 217.488863 175.619435 23.682952 80.71732 240.629117
135.211538 376.602666 63.012835 544.769763 127.339027 397.609857 79.942441 95.588856 241.65522 56.048214
111.354677 313.062072 73.021376 191.402444 84.020955 256.947331 87.893097 56.277664 87.501376 16.565829
102.685828 313.218182 60.122143 155.455404 88.015429 153.377589 87.645943 136.771059 57.134271 76.196594
77.085829 410.713411 56.009126 128.023107 62.826204 100.179842 71.88884 148.48364 63.203052 76.600043

127.326495 312.531788 87.987776 136.640787 87.729164 184.654168 103.901106 39.543767 65.988807 167.677451
127.453029 2556.817264 87.1531 88.098544 52.429236 1152.214633 80.036176 160.103027 87.531623 239.556451
107.505158 1120.121417 63.562018 1816.203297 72.109743 129.285149 77.201076 179.526623 264.019696 176.017975

1332.704428 743.658696 69.145342 903.118681 104.996458 143.964705 79.063601 772.531121 136.48999 70.26302
103.709186 768.42769 917.798935 282.254325 71.16879 152.939814 87.720639 257.093798 89.045796 128.968614
88.051638 240.417625 68.564856 123.690719 87.923546 96.475921 79.639067 680.416244 0 0

124.971657 424.909625 63.601773 210.948598 102.722219 520.724258 792.742008 199.535656 0 0
103.265294 560.544829 48.142607 437.555408 87.867479 136.207426 71.922984 337.19082 0 0
111.159016 208.272749 71.514858 240.223534 94.908559 161.111739 73.138564 304.110468 0 0
76.804398 387.328049 79.302494 168.705303 94.794349 153.303151 158.640021 47.95566 0 0

127.566959 824.204232 68.426092 184.093426 111.055085 160.920844 65.795532 71.931754 0 0
103.929867 749.139501 71.556512 1832.511807 71.385188 1552.514112 87.271967 234.013086 0 0
111.664665 181.549374 96.488573 63.417893 0 0 94.922674 417.202351 0 0
104.072044 377.313894 54.766791 121.219005 0 0 0 0 0 0
111.402852 4469.359964 86.798768 137.219228 0 0 0 0 0 0
136.601245 441.383328 62.651089 47.849927 0 0 0 0 0 0
488.647665 336.365132 63.382756 304.365987 0 0 0 0 0 0
119.273093 215.252019 110.856017 22.897231 0 0 0 0 0 0
102.901964 248.8454 80.274157 824.855008 0 0 0 0 0 0
88.326394 366.485754 0 0 0 0 0 0 0 0

121.728831 134.298732 0 0 0 0 0 0 0 0
73.144012 328.232848 0 0 0 0 0 0 0 0
70.180688 137.315618 0 0 0 0 0 0 0 0
65.853062 214.647776 0 0 0 0 0 0 0 0

143.269489 1752.023028 0 0 0 0 0 0 0 0
Overall Time: 1752.023028 824.855008 1552.514112 417.202351 128.968614

M
e
d
i
a
n

R
e
f
e
r
e
n
c
e

P
r
o
f
i
l
e

D
a
t
a

CS4203 – Computer Security University of St Andrews

Table 6: Parameter tuning data for mean averaging method.

2021-22 38 of 40

acceptance_threshold timing_tolerance true_positives false_positives true_negatives false_negatives FAR FRR
0.6 0.1 0 0 15 15 0.00% 50.00%
0.6 0.2 2 0 15 13 0.00% 43.33%
0.6 0.3 11 0 15 4 0.00% 13.33%
0.6 0.4 12 3 12 3 10.00% 10.00%
0.6 0.5 14 8 7 1 26.67% 3.33%
0.6 0.6 15 12 3 0 40.00% 0.00%
0.6 0.7 15 12 3 0 40.00% 0.00%
0.6 0.8 15 12 3 0 40.00% 0.00%
0.6 0.9 15 12 3 0 40.00% 0.00%
0.6 1 15 12 3 0 40.00% 0.00%
0.7 0.1 0 0 15 15 0.00% 50.00%
0.7 0.2 0 0 15 15 0.00% 50.00%
0.7 0.3 5 0 15 10 0.00% 33.33%
0.7 0.4 10 1 14 5 3.33% 16.67%
0.7 0.5 13 5 10 2 16.67% 6.67%
0.7 0.6 15 7 8 0 23.33% 0.00%
0.7 0.7 15 10 5 0 33.33% 0.00%
0.7 0.8 15 12 3 0 40.00% 0.00%
0.7 0.9 15 12 3 0 40.00% 0.00%
0.7 1 15 12 3 0 40.00% 0.00%
0.8 0.1 0 0 15 15 0.00% 50.00%
0.8 0.2 0 0 15 15 0.00% 50.00%
0.8 0.3 1 0 15 14 0.00% 46.67%
0.8 0.4 4 0 15 11 0.00% 36.67%
0.8 0.5 8 0 15 7 0.00% 23.33%
0.8 0.6 12 2 13 3 6.67% 10.00%
0.8 0.7 13 6 9 2 20.00% 6.67%
0.8 0.8 15 7 8 0 23.33% 0.00%
0.8 0.9 15 10 5 0 33.33% 0.00%
0.8 1 15 10 5 0 33.33% 0.00%
0.9 0.1 0 0 15 15 0.00% 50.00%
0.9 0.2 0 0 15 15 0.00% 50.00%
0.9 0.3 0 0 15 15 0.00% 50.00%
0.9 0.4 0 0 15 15 0.00% 50.00%
0.9 0.5 3 0 15 12 0.00% 40.00%
0.9 0.6 3 0 15 12 0.00% 40.00%
0.9 0.7 5 0 15 10 0.00% 33.33%
0.9 0.8 7 2 13 8 6.67% 26.67%
0.9 0.9 10 7 8 5 23.33% 16.67%
0.9 1 12 7 8 3 23.33% 10.00%

1 0.1 0 0 15 15 0.00% 50.00%
1 0.2 0 0 15 15 0.00% 50.00%
1 0.3 0 0 15 15 0.00% 50.00%
1 0.4 0 0 15 15 0.00% 50.00%
1 0.5 0 0 15 15 0.00% 50.00%
1 0.6 0 0 15 15 0.00% 50.00%
1 0.7 1 0 15 14 0.00% 46.67%
1 0.8 1 0 15 14 0.00% 46.67%
1 0.9 2 0 15 13 0.00% 43.33%
1 1 3 0 15 12 0.00% 40.00%

CS4203 – Computer Security University of St Andrews

2021-22 39 of 40

Table 7 Parameter tuning data for median averaging method. Optimal parameters highlighted.
acceptance_threshold timing_tolerance true_positives false_positives true_negatives false_negatives FAR FRR

0.6 0.1 0 0 15 15 0.00% 50.00%
0.6 0.2 4 0 15 11 0.00% 36.67%
0.6 0.3 10 0 15 5 0.00% 16.67%
0.6 0.4 15 1 14 0 3.33% 0.00%
0.6 0.5 15 6 9 0 20.00% 0.00%
0.6 0.6 15 12 3 0 40.00% 0.00%
0.6 0.7 15 12 3 0 40.00% 0.00%
0.6 0.8 15 12 3 0 40.00% 0.00%
0.6 0.9 15 12 3 0 40.00% 0.00%
0.6 1 15 12 3 0 40.00% 0.00%
0.7 0.1 0 0 15 15 0.00% 50.00%
0.7 0.2 0 0 15 15 0.00% 50.00%
0.7 0.3 6 0 15 9 0.00% 30.00%
0.7 0.4 10 0 15 5 0.00% 16.67%
0.7 0.5 14 3 12 1 10.00% 3.33%
0.7 0.6 15 6 9 0 20.00% 0.00%
0.7 0.7 15 9 6 0 30.00% 0.00%
0.7 0.8 15 11 4 0 36.67% 0.00%
0.7 0.9 15 12 3 0 40.00% 0.00%
0.7 1 15 12 3 0 40.00% 0.00%
0.8 0.1 0 0 15 15 0.00% 50.00%
0.8 0.2 0 0 15 15 0.00% 50.00%
0.8 0.3 1 0 15 14 0.00% 46.67%
0.8 0.4 4 0 15 11 0.00% 36.67%
0.8 0.5 8 0 15 7 0.00% 23.33%
0.8 0.6 12 1 14 3 3.33% 10.00%
0.8 0.7 13 3 12 2 10.00% 6.67%
0.8 0.8 14 5 10 1 16.67% 3.33%
0.8 0.9 15 10 5 0 33.33% 0.00%
0.8 1 15 10 5 0 33.33% 0.00%
0.9 0.1 0 0 15 15 0.00% 50.00%
0.9 0.2 0 0 15 15 0.00% 50.00%
0.9 0.3 0 0 15 15 0.00% 50.00%
0.9 0.4 0 0 15 15 0.00% 50.00%
0.9 0.5 3 0 15 12 0.00% 40.00%
0.9 0.6 3 0 15 12 0.00% 40.00%
0.9 0.7 5 0 15 10 0.00% 33.33%
0.9 0.8 8 0 15 7 0.00% 23.33%
0.9 0.9 8 1 14 7 3.33% 23.33%
0.9 1 10 5 10 5 16.67% 16.67%

1 0.1 0 0 15 15 0.00% 50.00%
1 0.2 0 0 15 15 0.00% 50.00%
1 0.3 0 0 15 15 0.00% 50.00%
1 0.4 0 0 15 15 0.00% 50.00%
1 0.5 0 0 15 15 0.00% 50.00%
1 0.6 0 0 15 15 0.00% 50.00%
1 0.7 1 0 15 14 0.00% 46.67%
1 0.8 1 0 15 14 0.00% 46.67%
1 0.9 1 0 15 14 0.00% 46.67%
1 1 1 0 15 14 0.00% 46.67%

CS4203 – Computer Security University of St Andrews

Table 8: Parameter tuning data for median averaging method on password-only dataset

2021-22 40 of 40

Table 9: Username length data sorted according to username length in ascending order.
Subject # Username Length true_positives false_positives true_negatives false_negatives FAR FRR

5 3 3 1 2 0 0.1666666667 0
3 10 3 0 3 0 0 0
4 12 3 0 3 0 0 0
2 19 3 0 3 0 0 0
1 22 3 0 3 0 0 0

acceptance_tolerance timing_tolerance true_positives false_positives true_negatives false_negatives FAR FRR
0.6 0.1 0 0 15 15 0.00% 50.00%
0.6 0.2 7 0 15 8 0.00% 26.67%
0.6 0.3 9 1 14 6 3.33% 20.00%
0.6 0.4 10 4 11 5 13.33% 16.67%
0.6 0.5 14 7 8 1 23.33% 3.33%
0.6 0.6 15 9 6 0 30.00% 0.00%
0.6 0.7 15 9 6 0 30.00% 0.00%
0.6 0.8 15 11 4 0 36.67% 0.00%
0.6 0.9 15 12 3 0 40.00% 0.00%
0.6 1 15 12 3 0 40.00% 0.00%
0.7 0.1 0 0 15 15 0.00% 50.00%
0.7 0.2 2 0 15 13 0.00% 43.33%
0.7 0.3 6 0 15 9 0.00% 30.00%
0.7 0.4 8 0 15 7 0.00% 23.33%
0.7 0.5 8 2 13 7 6.67% 23.33%
0.7 0.6 14 3 12 1 10.00% 3.33%
0.7 0.7 15 7 8 0 23.33% 0.00%
0.7 0.8 15 9 6 0 30.00% 0.00%
0.7 0.9 15 9 6 0 30.00% 0.00%
0.7 1 15 9 6 0 30.00% 0.00%
0.8 0.1 0 0 15 15 0.00% 50.00%
0.8 0.2 0 0 15 15 0.00% 50.00%
0.8 0.3 3 0 15 12 0.00% 40.00%
0.8 0.4 6 0 15 9 0.00% 30.00%
0.8 0.5 7 0 15 8 0.00% 26.67%
0.8 0.6 7 1 14 8 3.33% 26.67%
0.8 0.7 10 2 13 5 6.67% 16.67%
0.8 0.8 11 4 11 4 13.33% 13.33%
0.8 0.9 12 8 7 3 26.67% 10.00%
0.8 1 12 9 6 3 30.00% 10.00%
0.9 0.1 0 0 15 15 0.00% 50.00%
0.9 0.2 0 0 15 15 0.00% 50.00%
0.9 0.3 0 0 15 15 0.00% 50.00%
0.9 0.4 1 0 15 14 0.00% 46.67%
0.9 0.5 2 0 15 13 0.00% 43.33%
0.9 0.6 4 0 15 11 0.00% 36.67%
0.9 0.7 5 0 15 10 0.00% 33.33%
0.9 0.8 9 1 14 6 3.33% 20.00%
0.9 0.9 10 3 12 5 10.00% 16.67%
0.9 1 12 4 11 3 13.33% 10.00%

1 0.1 0 0 15 15 0.00% 50.00%
1 0.2 0 0 15 15 0.00% 50.00%
1 0.3 0 0 15 15 0.00% 50.00%
1 0.4 0 0 15 15 0.00% 50.00%
1 0.5 0 0 15 15 0.00% 50.00%
1 0.6 1 0 15 14 0.00% 46.67%
1 0.7 1 0 15 14 0.00% 46.67%
1 0.8 2 0 15 13 0.00% 43.33%
1 0.9 2 0 15 13 0.00% 43.33%
1 1 3 0 15 12 0.00% 40.00%

	PartialKey.java
	Key.java
	Chain.java
	KeyLogger.java
	Window.java
	Example results file
	strip_usernames.py
	reference_profiles.py
	test_login.py
	3d_plot.py

