COM1028 Software Engineering
Software Engineering Report
Jamie Munro
6480591, im01301@surrey.ac.uk

L T8 06 18 5 o) 1 OSSR 1
2. Reflection ON DESIZN.....cccuuiiiiiiiiiie ettt et e ettt e e e et e e sbteeesbeeesabeeesesnssbeeeesennnnsaeaeens 1
3. RefleCtion ON TeSTINE....c..viiiiiieeiieeeiie ettt ettt et e et e e st e e s steeesnbeeesnseeennseeennsaeennsaeeens 2
O N {53 1S 1 1o PSPPSR 2

1. Introduction

This report provides a reflection of the design and requirements testing for my Code Snippet
Manager. It contains an evaluation of each of those phases and the experience gained through the
project.

2. Reflection on Design

The design of the project was very successful in implementing all of the mandatory functional
requirements. It generates a uniform and intuitive graphical interface and includes a help menu, this
makes it easy to use. All data is presented clearly to the user who is able to edit this data. All data is
saved and restored across sessions. Users can search all the snippets in the database and search
terms can include text from the title, language or tags of a snippet. They can also sort their snippets
or search results by date, programming language or title, and can choose whether this sorting is
ascending or descending.

Originally a relational database was planned for storing the data that the program interacts with.
However all the logic that the application executes on this data is performed whilst the data is held
in data structures in the program memory. This means the benefits of SQL will not be effectively
utilised and makes storing representations of these data structures on the disk a more efficient and
attractive option. Java’s built-in methods ObjectInputStream and ObjectOutputStream are used to
store and load such representations. Not only does this make the code simpler and more elegant, but
as both these methods are included in the standard Java library, the project does not have to include
3" party database engine software — reducing the application’s memory and disk footprint.

For the most part, integration between classes is very good, and the UML class diagram makes the
relationships, associations and multiplicity constrains between classes clear. However, during the
implementation of the Window class, it became much larger and more complex then originally
planned. This was in part due to the large number of SWING (GUI) variables and listeners but also
because many additional helper methods had to be implemented. The large number of members has
made the class diagram very unwieldily. In future iterations of the project, it would be a good idea
to abstract some of the logic away from the Window class to simplify the code.

Other then the UML class diagram, no other diagrams are part of the design. Originally an EER
diagram was included, but as explained earlier, a relational database is no longer part of the project.
There are no additional models that are not represented within the class diagram.

The search algorithm that has been implemented is probably not the most efficient way of searching
the snippets. For a small number of snippets this is fine, but once a user starts searching hundreds of

mailto:jm01301@surrey.ac.uk

Jamie Munro
snippets they could begin to run into performance issues. Future iterations of the application should
look at at and compare the efficiency of alternative search algorithms.

During the development of the project care was taken to insure that the system would meet non-
functional requirement 2.1 portability. As the system is developed in Java, it should be able to run
on any system that has a Java Virtual Machine (JVM) implementation. As the project also makes
use of the SWING GUI toolkit, computer systems will need to support the SWING toolkit and
provide a graphical environment. One challenge faced whilst developing the system to meet this
requirement is ensuring that the database is saved in a platform-independent location. This problem
was solved using the “System.getProperty(‘user.home’);” method which returns the default file
location for the user on any system (i.e. the home directory on Linux).

None of the optional requirements are implemented as they were more difficult then the mandatory
requirements and ultimately could not be completed within the time constraint. In future iterations
of this project, these optional requirements should be looked at again.

3. Reflection on Testing

Testing of the project was a combination of automated unit (Junit) tests, black box requirement
testing and ad hoc testing. Ad hoc testing methods were used throughout the development of the
project to ensure that new code was heading in the right direction. These ad hoc tests would involve
techniques such as testing out new methods with sample data to see if they produced the expected
results. Another frequently used technique was using “System.out.println()” statements to track the
value of variables throughout the execution of the program. Junit tests were written for the data-
orientated classes (DatabaseManager, Resultltem and Snippet) as these methods were suited for unit
style tests. Due to the user-facing nature of the code in the Window class, it was not suitable for
automated unit style testing and, whilst ad hoc testing was used throughout the development of the
class, requirements testing was primarily relied upon.

A black box testing plan, where the tester would not require any knowledge of how the project is
implemented, was created to test each functional requirement of the project. Whilst this only
indirectly tests the window class, requirements testing was very successful in this role, and many
issues were detected. An example of a requirements test that failed was test 19 which was testing
requirement F13. To pass this test, changes to the code had to be persisted between sessions,
however initially this was not the case. Requirements testing was able to pick up this issue,
providing the opportunity to fix it. Whilst the underlying issue was simple - a missing call to
editCode() - such an issue could have gone unnoticed if requirements testing had not been carried
out.

All of the tests can be evaluated simply by visual inspection (with screenshots for evidence) and
simply involve comparing the program’s graphical output with the expected output. Many of the
tests require the system to be in a known state, but the steps required to put the system into the
required state are listed in the test plan.

Whilst requirements testing was able to assist in the fixing of many small issues, it did not lead to
any elements of the project needing to be redesigned. Black box requirement testing allows
developers to ensure that all of the functional requirements are met from a user’s point of view,
making it a very good way to test a user-centric project like this. Eventually the project passed all of
the requirement tests listed in the test plan and so it can be concluded that the project meets all of its
(mandatory) requirements.

Jamie Munro

4. References

[1] IEEE Software Engineering Standards Committee, “IEEE Std 829-2008, IEEE Standard for
Software and System Test Documentation”, July 18, 2008

	1. Introduction
	2. Reflection on Design
	3. Reflection on Testing
	4. References

